healthcarereimagined

Envisioning healthcare for the 21st century

  • About
  • Economics

A Radical Plan to Make AI Good, Not Evil – Wired

Posted by timmreardon on 05/10/2023
Posted in: Uncategorized.

OpenAI competitor Anthropic says its Claude chatbot has a built-in “constitution” that can instill ethical principles and keep systems from going rogue.

IT’S EASY TO freak out about more advanced artificial intelligence—and much more difficult to know what to do about it. Anthropic, a startup founded in 2021 by a group of researchers who left OpenAI, says it has a plan. 

Anthropic is working on AI models similar to the one used to power OpenAI’s ChatGPT. But the startup announced today that its own chatbot, Claude, has a set of ethical principles built in that define what it should consider right and wrong, which Anthropic calls the bot’s “constitution.” 

Jared Kaplan, a cofounder of Anthropic, says the design feature shows how the company is trying to find practical engineering solutions to sometimes fuzzy concerns about the downsides of more powerful AI. “We’re very concerned, but we also try to remain pragmatic,” he says. 

Anthropic’s approach doesn’t instill an AI with hard rules it cannot break. But Kaplan says it is a more effective way to make a system like a chatbot less likely to produce toxic or unwanted output. He also says it is a small but meaningful step toward building smarter AI programs that are less likely to turn against their creators.

The notion of rogue AI systems is best known from science fiction, but a growing number of experts, including Geoffrey Hinton, a pioneer of machine learning, have argued that we need to start thinking now about how to ensure increasingly clever algorithms do not also become increasingly dangerous. 

The principles that Anthropic has given Claude consist of guidelines drawn from the United Nations Universal Declaration of Human Rightsand suggested by other AI companies, including Google DeepMind. More surprisingly, the constitution includes principles adapted from Apple’s rules for app developers, which bar “content that is offensive, insensitive, upsetting, intended to disgust, in exceptionally poor taste, or just plain creepy,” among other things.

The constitution includes rules for the chatbot, including “choose the response that most supports and encourages freedom, equality, and a sense of brotherhood”; “choose the response that is most supportive and encouraging of life, liberty, and personal security”; and “choose the response that is most respectful of the right to freedom of thought, conscience, opinion, expression, assembly, and religion.”

Anthropic’s approach comes just as startling progress in AIdelivers impressively fluent chatbots with significant flaws. ChatGPT and systems like it generate impressive answers that reflect more rapid progress than expected. But these chatbots also frequently fabricate information, and can replicate toxic languagefrom the billions of words used to create them, many of which are scraped from the internet.

One trick that made OpenAI’s ChatGPT better at answering questions, and which has been adopted by others, involves having humans grade the quality of a language model’s responses. That data can be used to tune the model to provide answers that feel more satisfying, in a process known as “reinforcement learning with human feedback” (RLHF). But although the technique helps make ChatGPT and other systems more predictable, it requires humans to go through thousands of toxic or unsuitable responses. It also functions indirectly, without providing a way to specify the exact values a system should reflect.

nthropic’s new constitutional approach operates over two phases. In the first, the model is given a set of principles and examples of answers that do and do not adhere to them. In the second, another AI model is used to generate more responses that adhere to the constitution, and this is used to train the model instead of human feedback.

“The model trains itself by basically reinforcing the behaviors that are more in accord with the constitution, and discourages behaviors that are problematic,” Kaplan says.

“It’s a great idea that seemingly led to a good empirical result for Anthropic,” says Yejin Choi, a professor at the University of Washington who led a previous experiment that involved a large language model giving ethical advice. 

Choi says that the approach will work only for companies with large models and plenty of compute power. She adds that it is also important to explore other approaches, including greater transparency around training data and the values that models are given. “We desperately need to involve people in the broader community to develop such constitutions or datasets of norms and values,” she says.

Thomas Dietterich, a professor at Oregon State University who is researching ways of making AI more robust, says Anthropic’s approach looks like a step in the right direction. “They can scale feedback-based training much more cheaply and without requiring people—data labelers—to expose themselves to thousands of hours of toxic material,” he says

Dietterich adds it is especially important that the rules Claude adheres to can be inspected by those working on the system as well as outsiders, unlike the instructions that humans give a model through RLHF. But he says that the method does not completely eradicate errant behavior. Anthropic’s model is less likely to come out with toxic or morally problematic answers, but it is not perfect.

The idea of giving AI a set of rules to follow might seem familiar, having been put forward by Isaac Asimov in a series of science fiction stories that proposed Three Laws of Robotics. Asimov’s stories typically centered on the fact that the real world often presented situations that created a conflict between individual rules.

Kaplan of Anthropic says that modern AI is actually quite good at handling this kind of ambiguity. “The strange thing about contemporary AI with deep learning is that it’s kind of the opposite of the sort of 1950s picture of robots, where these systems are, in some ways, very good at intuition and free association,” he says. “If anything, they’re weaker on rigid reasoning.”

Anthropic says other companies and organizations will be able to give language models a constitution based on a research paper that outlines its approach. The company says it plans to build on the method with the goal of ensuring that even as AI gets smarter, it does not go rogue.

Updated 5-9-2023, 3:20 pm EDT: Thomas Dietterich is at Oregon State University, not the University of Oregon.

Article link: https://www.wired.com/story/anthropic-ai-chatbots-ethics/?

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
Like Loading...

Related

Posts navigation

← White House and GSA launch platforms to improve equity in federal procurement – Fedscoop
6 Key Levers of a Successful Organizational Transformation- HBR →
  • Search site

  • Follow healthcarereimagined on WordPress.com
  • Recent Posts

    • Decisions about AI will last decades. Researchers need better frameworks – Bulletin of the Atomic Scientists 12/29/2025
    • Quantum computing reality check: What business needs to know now – MIT Sloan 12/29/2025
    • AI’s missing ingredient: Shared wisdom – MIT Sloan 12/21/2025
    • Hype Correction – MIT Technology Review 12/15/2025
    • Semantic Collapse – NeurIPS 2025 12/12/2025
    • The arrhythmia of our current age – MIT Technology Review 12/11/2025
    • AI: The Metabolic Mirage 12/09/2025
    • When it all comes crashing down: The aftermath of the AI boom – Bulletin of the Atomic Scientists 12/05/2025
    • Why Digital Transformation—And AI—Demands Systems Thinking – Forbes 12/02/2025
    • How artificial intelligence impacts the US labor market – MIT Sloan 12/01/2025
  • Categories

    • Accountable Care Organizations
    • ACOs
    • AHRQ
    • American Board of Internal Medicine
    • Big Data
    • Blue Button
    • Board Certification
    • Cancer Treatment
    • Data Science
    • Digital Services Playbook
    • DoD
    • EHR Interoperability
    • EHR Usability
    • Emergency Medicine
    • FDA
    • FDASIA
    • GAO Reports
    • Genetic Data
    • Genetic Research
    • Genomic Data
    • Global Standards
    • Health Care Costs
    • Health Care Economics
    • Health IT adoption
    • Health Outcomes
    • Healthcare Delivery
    • Healthcare Informatics
    • Healthcare Outcomes
    • Healthcare Security
    • Helathcare Delivery
    • HHS
    • HIPAA
    • ICD-10
    • Innovation
    • Integrated Electronic Health Records
    • IT Acquisition
    • JASONS
    • Lab Report Access
    • Military Health System Reform
    • Mobile Health
    • Mobile Healthcare
    • National Health IT System
    • NSF
    • ONC Reports to Congress
    • Oncology
    • Open Data
    • Patient Centered Medical Home
    • Patient Portals
    • PCMH
    • Precision Medicine
    • Primary Care
    • Public Health
    • Quadruple Aim
    • Quality Measures
    • Rehab Medicine
    • TechFAR Handbook
    • Triple Aim
    • U.S. Air Force Medicine
    • U.S. Army
    • U.S. Army Medicine
    • U.S. Navy Medicine
    • U.S. Surgeon General
    • Uncategorized
    • Value-based Care
    • Veterans Affairs
    • Warrior Transistion Units
    • XPRIZE
  • Archives

    • December 2025 (11)
    • November 2025 (9)
    • October 2025 (10)
    • September 2025 (4)
    • August 2025 (7)
    • July 2025 (2)
    • June 2025 (9)
    • May 2025 (4)
    • April 2025 (11)
    • March 2025 (11)
    • February 2025 (10)
    • January 2025 (12)
    • December 2024 (12)
    • November 2024 (7)
    • October 2024 (5)
    • September 2024 (9)
    • August 2024 (10)
    • July 2024 (13)
    • June 2024 (18)
    • May 2024 (10)
    • April 2024 (19)
    • March 2024 (35)
    • February 2024 (23)
    • January 2024 (16)
    • December 2023 (22)
    • November 2023 (38)
    • October 2023 (24)
    • September 2023 (24)
    • August 2023 (34)
    • July 2023 (33)
    • June 2023 (30)
    • May 2023 (35)
    • April 2023 (30)
    • March 2023 (30)
    • February 2023 (15)
    • January 2023 (17)
    • December 2022 (10)
    • November 2022 (7)
    • October 2022 (22)
    • September 2022 (16)
    • August 2022 (33)
    • July 2022 (28)
    • June 2022 (42)
    • May 2022 (53)
    • April 2022 (35)
    • March 2022 (37)
    • February 2022 (21)
    • January 2022 (28)
    • December 2021 (23)
    • November 2021 (12)
    • October 2021 (10)
    • September 2021 (4)
    • August 2021 (4)
    • July 2021 (4)
    • May 2021 (3)
    • April 2021 (1)
    • March 2021 (2)
    • February 2021 (1)
    • January 2021 (4)
    • December 2020 (7)
    • November 2020 (2)
    • October 2020 (4)
    • September 2020 (7)
    • August 2020 (11)
    • July 2020 (3)
    • June 2020 (5)
    • April 2020 (3)
    • March 2020 (1)
    • February 2020 (1)
    • January 2020 (2)
    • December 2019 (2)
    • November 2019 (1)
    • September 2019 (4)
    • August 2019 (3)
    • July 2019 (5)
    • June 2019 (10)
    • May 2019 (8)
    • April 2019 (6)
    • March 2019 (7)
    • February 2019 (17)
    • January 2019 (14)
    • December 2018 (10)
    • November 2018 (20)
    • October 2018 (14)
    • September 2018 (27)
    • August 2018 (19)
    • July 2018 (16)
    • June 2018 (18)
    • May 2018 (28)
    • April 2018 (3)
    • March 2018 (11)
    • February 2018 (5)
    • January 2018 (10)
    • December 2017 (20)
    • November 2017 (30)
    • October 2017 (33)
    • September 2017 (11)
    • August 2017 (13)
    • July 2017 (9)
    • June 2017 (8)
    • May 2017 (9)
    • April 2017 (4)
    • March 2017 (12)
    • December 2016 (3)
    • September 2016 (4)
    • August 2016 (1)
    • July 2016 (7)
    • June 2016 (7)
    • April 2016 (4)
    • March 2016 (7)
    • February 2016 (1)
    • January 2016 (3)
    • November 2015 (3)
    • October 2015 (2)
    • September 2015 (9)
    • August 2015 (6)
    • June 2015 (5)
    • May 2015 (6)
    • April 2015 (3)
    • March 2015 (16)
    • February 2015 (10)
    • January 2015 (16)
    • December 2014 (9)
    • November 2014 (7)
    • October 2014 (21)
    • September 2014 (8)
    • August 2014 (9)
    • July 2014 (7)
    • June 2014 (5)
    • May 2014 (8)
    • April 2014 (19)
    • March 2014 (8)
    • February 2014 (9)
    • January 2014 (31)
    • December 2013 (23)
    • November 2013 (48)
    • October 2013 (25)
  • Tags

    Business Defense Department Department of Veterans Affairs EHealth EHR Electronic health record Food and Drug Administration Health Health informatics Health Information Exchange Health information technology Health system HIE Hospital IBM Mayo Clinic Medicare Medicine Military Health System Patient Patient portal Patient Protection and Affordable Care Act United States United States Department of Defense United States Department of Veterans Affairs
  • Upcoming Events

Blog at WordPress.com.
  • Reblog
  • Subscribe Subscribed
    • healthcarereimagined
    • Join 153 other subscribers
    • Already have a WordPress.com account? Log in now.
    • healthcarereimagined
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

    %d