healthcarereimagined

Envisioning healthcare for the 21st century

  • About
  • Economics

New database details AI risks – MIT

Posted by timmreardon on 06/12/2025
Posted in: Uncategorized.

by Beth Stackpole

Nov 26, 2024

Why It Matters

The AI Risk Repository aims to provide industry, policymakers, and academics with a shared framework for monitoring and maintaining AI risk oversight.

As artificial intelligence sees unprecedented growth and industry use cases soar, concerns mount about the technology’s risks, including bias, data breaches, job loss, and misuse. 

According to research firm Arize AI, the number of Fortune 500 companies citing AI as a risk in their annual financial reports hit 281 this year. That represents a 473.5% increase from 2022, when just 49 companies flagged the technology as a risk factor.

Given the scope and seriousness of the risk climate, a team of researchers that included MIT Sloan research scientist Neil Thompson has created the AI Risk Repository, a living database of over 700 risks posed by AI, categorized by cause and risk domain. The project aims to provide industry, policymakers, academics, and risk evaluators with a shared framework for monitoring and maintaining oversight of AI risks. The repository can also aid organizations with their internal risk assessments, risk mitigation strategies, and research and training development. 

777

The AI Risk Database details 777 different risks cited in AI literature to date.

While other entities have attempted to classify AI risks, existing classifications have generally been focused on only a small part of the overall AI risk landscape.

“The risks posed by AI systems are becoming increasingly significant as AI adoption accelerates across industry and society,” said Peter Slattery, a researcher at MIT FutureTech and the project lead. “However, these risks are often discussed in fragmented ways, across different industries and academic fields, without a shared vocabulary or consistent framework.”

Creating a unified risk view

To create the risk repository, the researchers searched academic databases and consulted other resources to review existing taxonomies and structured classifications of AI risk. They found that two types of classification systems were common in existing literature: high-level categorizations of causes of AI risks, such as when and why risks from AI occur; and midlevel categorizations of hazards and harms from AI, such as using AI to develop weapons or training AI systems on limited data.

Both types of classification systems are used in the AI Risk Repository, which has three components:

  • The AI Risk Database captures 777 different risks from 43 documents, with quotes and page numbers included. It will be updated as new risks emerge.
  • The Causal Taxonomy of AI Risksclassifies how, when, and why such risks occur, based on their root causes. Causes are broken out into three categories: entity responsible (human or AI), the intentionality behind the risk (intentional or unintentional), and the timing of the risk (pre-deployment or post-deployment).
  • The Domain Taxonomy of AI Riskssegments risks by the domain in which they occur, such as privacy, misinformation, or AI systems safety. This section mentions seven domains and 23 subdomains. 

The two taxonomies can be used separately to filter the database for specific risks and domains, or they can be used in tandem to understand how each causal factor relates to each risk domain. For example, a user can use both filters to differentiate between discrimination and toxicity risks when AI is deliberately trained on toxic content from the outset, and instances of risk where AI inadvertently causes harm after the fact by displaying toxic content.

As part of the exercise, the researchers uncovered some interesting insights about the current literature. Among them:

  • Most risks were attributed to AI systems rather than to humans (51% versus 34%).
  • Most of the risks discussed occurred after an AI model had been trained and deployed (65%) rather than before (10%).
  • Nearly an equal number of intentional (35%) and unintentional (37%) risks were identified.

Putting the AI Risk Repository to work 

The MIT AI Risk Repository will have different uses for different audiences.

RELATED ARTICLES

A framework for assessing AI risk

From MIT, a technically informed approach to governing

AIThird-party AI tools pose risks for organizations

Policymakers. The repository can serve as a guide for developing and enacting regulations on AI systems. For example, it can be used to identify the type and nature of risks and their sources as AI developers aim to comply with regulations like the EU AI Act. The tool also creates a common language and set of criteria for discussing AI risks at a global scale.

Auditors. The repository provides a shared understanding of risks from AI systems that can guide those in charge of evaluating and auditing AI risks. While some AI risk management frameworks had already been developed, they are much less comprehensive.

Academics. The taxonomy can be used to synthesize information about AI risks across studies and sources. It can also help identify gaps in current knowledge so efforts can be directed toward those areas. The AI Risk Repository can also play a role in education and training, acclimating students and professionals to the inner workings of the AI risk landscape.

Industry. The AI Risk Repository can be a critical tool for safe and responsible AI application development as organizations build new systems. The AI Risk Database can also help identify specific behaviors that mitigate risk exposure.

“The risks of AI are poised to become increasingly common and pressing,” the MIT researchers write. “Efforts to understand and address these risks must be able to keep pace with the advancements in deployment of AI systems. We hope our living, common frame of reference will help these endeavors to be more accessible, incremental, and successful.”

Article link: https://mitsloan.mit.edu/ideas-made-to-matter/new-database-details-ai-risks?

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
Like Loading...

Related

Posts navigation

← Algorithms are everywhere – MIT Technology Review
VA official touts progress on EHR modernization project – Nextgov →
  • Search site

  • Follow healthcarereimagined on WordPress.com
  • Recent Posts

    • Hype Correction – MIT Technology Review 12/15/2025
    • Semantic Collapse – NeurIPS 2025 12/12/2025
    • The arrhythmia of our current age – MIT Technology Review 12/11/2025
    • AI: The Metabolic Mirage 12/09/2025
    • When it all comes crashing down: The aftermath of the AI boom – Bulletin of the Atomic Scientists 12/05/2025
    • Why Digital Transformation—And AI—Demands Systems Thinking – Forbes 12/02/2025
    • How artificial intelligence impacts the US labor market – MIT Sloan 12/01/2025
    • Will quantum computing be chemistry’s next AI? 12/01/2025
    • Ontology is having its moment. 11/28/2025
    • Disconnected Systems Lead to Disconnected Care 11/26/2025
  • Categories

    • Accountable Care Organizations
    • ACOs
    • AHRQ
    • American Board of Internal Medicine
    • Big Data
    • Blue Button
    • Board Certification
    • Cancer Treatment
    • Data Science
    • Digital Services Playbook
    • DoD
    • EHR Interoperability
    • EHR Usability
    • Emergency Medicine
    • FDA
    • FDASIA
    • GAO Reports
    • Genetic Data
    • Genetic Research
    • Genomic Data
    • Global Standards
    • Health Care Costs
    • Health Care Economics
    • Health IT adoption
    • Health Outcomes
    • Healthcare Delivery
    • Healthcare Informatics
    • Healthcare Outcomes
    • Healthcare Security
    • Helathcare Delivery
    • HHS
    • HIPAA
    • ICD-10
    • Innovation
    • Integrated Electronic Health Records
    • IT Acquisition
    • JASONS
    • Lab Report Access
    • Military Health System Reform
    • Mobile Health
    • Mobile Healthcare
    • National Health IT System
    • NSF
    • ONC Reports to Congress
    • Oncology
    • Open Data
    • Patient Centered Medical Home
    • Patient Portals
    • PCMH
    • Precision Medicine
    • Primary Care
    • Public Health
    • Quadruple Aim
    • Quality Measures
    • Rehab Medicine
    • TechFAR Handbook
    • Triple Aim
    • U.S. Air Force Medicine
    • U.S. Army
    • U.S. Army Medicine
    • U.S. Navy Medicine
    • U.S. Surgeon General
    • Uncategorized
    • Value-based Care
    • Veterans Affairs
    • Warrior Transistion Units
    • XPRIZE
  • Archives

    • December 2025 (8)
    • November 2025 (9)
    • October 2025 (10)
    • September 2025 (4)
    • August 2025 (7)
    • July 2025 (2)
    • June 2025 (9)
    • May 2025 (4)
    • April 2025 (11)
    • March 2025 (11)
    • February 2025 (10)
    • January 2025 (12)
    • December 2024 (12)
    • November 2024 (7)
    • October 2024 (5)
    • September 2024 (9)
    • August 2024 (10)
    • July 2024 (13)
    • June 2024 (18)
    • May 2024 (10)
    • April 2024 (19)
    • March 2024 (35)
    • February 2024 (23)
    • January 2024 (16)
    • December 2023 (22)
    • November 2023 (38)
    • October 2023 (24)
    • September 2023 (24)
    • August 2023 (34)
    • July 2023 (33)
    • June 2023 (30)
    • May 2023 (35)
    • April 2023 (30)
    • March 2023 (30)
    • February 2023 (15)
    • January 2023 (17)
    • December 2022 (10)
    • November 2022 (7)
    • October 2022 (22)
    • September 2022 (16)
    • August 2022 (33)
    • July 2022 (28)
    • June 2022 (42)
    • May 2022 (53)
    • April 2022 (35)
    • March 2022 (37)
    • February 2022 (21)
    • January 2022 (28)
    • December 2021 (23)
    • November 2021 (12)
    • October 2021 (10)
    • September 2021 (4)
    • August 2021 (4)
    • July 2021 (4)
    • May 2021 (3)
    • April 2021 (1)
    • March 2021 (2)
    • February 2021 (1)
    • January 2021 (4)
    • December 2020 (7)
    • November 2020 (2)
    • October 2020 (4)
    • September 2020 (7)
    • August 2020 (11)
    • July 2020 (3)
    • June 2020 (5)
    • April 2020 (3)
    • March 2020 (1)
    • February 2020 (1)
    • January 2020 (2)
    • December 2019 (2)
    • November 2019 (1)
    • September 2019 (4)
    • August 2019 (3)
    • July 2019 (5)
    • June 2019 (10)
    • May 2019 (8)
    • April 2019 (6)
    • March 2019 (7)
    • February 2019 (17)
    • January 2019 (14)
    • December 2018 (10)
    • November 2018 (20)
    • October 2018 (14)
    • September 2018 (27)
    • August 2018 (19)
    • July 2018 (16)
    • June 2018 (18)
    • May 2018 (28)
    • April 2018 (3)
    • March 2018 (11)
    • February 2018 (5)
    • January 2018 (10)
    • December 2017 (20)
    • November 2017 (30)
    • October 2017 (33)
    • September 2017 (11)
    • August 2017 (13)
    • July 2017 (9)
    • June 2017 (8)
    • May 2017 (9)
    • April 2017 (4)
    • March 2017 (12)
    • December 2016 (3)
    • September 2016 (4)
    • August 2016 (1)
    • July 2016 (7)
    • June 2016 (7)
    • April 2016 (4)
    • March 2016 (7)
    • February 2016 (1)
    • January 2016 (3)
    • November 2015 (3)
    • October 2015 (2)
    • September 2015 (9)
    • August 2015 (6)
    • June 2015 (5)
    • May 2015 (6)
    • April 2015 (3)
    • March 2015 (16)
    • February 2015 (10)
    • January 2015 (16)
    • December 2014 (9)
    • November 2014 (7)
    • October 2014 (21)
    • September 2014 (8)
    • August 2014 (9)
    • July 2014 (7)
    • June 2014 (5)
    • May 2014 (8)
    • April 2014 (19)
    • March 2014 (8)
    • February 2014 (9)
    • January 2014 (31)
    • December 2013 (23)
    • November 2013 (48)
    • October 2013 (25)
  • Tags

    Business Defense Department Department of Veterans Affairs EHealth EHR Electronic health record Food and Drug Administration Health Health informatics Health Information Exchange Health information technology Health system HIE Hospital IBM Mayo Clinic Medicare Medicine Military Health System Patient Patient portal Patient Protection and Affordable Care Act United States United States Department of Defense United States Department of Veterans Affairs
  • Upcoming Events

Blog at WordPress.com.
  • Reblog
  • Subscribe Subscribed
    • healthcarereimagined
    • Join 154 other subscribers
    • Already have a WordPress.com account? Log in now.
    • healthcarereimagined
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

    %d