healthcarereimagined

Envisioning healthcare for the 21st century

  • About
  • Economics

Researchers Have Ranked AI Models Based on Risk—and Found a Wild Range – Wired

Posted by timmreardon on 08/24/2024
Posted in: Uncategorized.

Studies suggest that regulations could be tightened to head off AI misbehavior.

WILL KNIGHT

AUG 15, 2024 12:00 PM

BO LI, an associate professor at the University of Chicago who specializes in stress testing and provoking AI models to uncover misbehavior, has become a go-to source for some consulting firms. These consultancies are often now less concerned with how smart AI models are than with how problematic—legally, ethically, and in terms of regulatory compliance—they can be.

Li and colleagues from several other universities, as well as Virtue AI, cofounded by Li, and Lapis Labs, recently developed a taxonomy of AI risks along with a benchmark that reveals how rule-breaking different large language models are. “We need some principles for AI safety, in terms of regulatory compliance and ordinary usage,” Li tells WIRED.

Theresearchers analyzedgovernment AI regulations and guidelines, including those of the US, China, and the EU, and studied the usage policies of 16 major AI companies from around the world.

The researchers also built AIR-Bench 2024, a benchmark that uses thousands of prompts to determine how popular AI models fare in terms of specific risks. It shows, for example, that Anthropic’s Claude 3 Opus ranks highly when it comes to refusing to generate cybersecurity threats, while Google’s Gemini 1.5 Pro ranks highly in terms of avoiding generating nonconsensual sexual nudity.

DBRX Instruct, a model developed by Databricks, scored the worst across the board. When the company released its model in March, it said that it would continue to improve DBRX Instruct’s safety features.

Anthropic, Google, and Databricks did not immediately respond to a request for comment.

Understanding the risk landscape, as well as the pros and cons of specific models, may become increasingly important for companies looking to deploy AI in certain markets or for certain use cases. A company looking to use a LLM for customer service, for instance, might care more about a model’s propensity to produce offensive language when provoked than how capable it is of designing a nuclear device.

Bo says the analysis also reveals some interesting issues with how AI is being developed and regulated. For instance, the researchers found government rules to be less comprehensive than companies’ policies overall, suggesting that there is room for regulations to be tightened.

The analysis also suggests that some companies could do more to ensure their models are safe. “If you test some models against a company’s own policies, they are not necessarily compliant,” Bo says. “This means there is a lot of room for them to improve.”

Other researchers are trying to bring order to a messy and confusing AI risk landscape. This week, two researchers at MIT revealed their own database of AI dangers, compiled from 43 different AI risk frameworks. “Many organizations are still pretty early in that process of adopting AI,” meaning they need guidance on the possible perils, says Neil Thompson, a research scientist at MIT involved with the project.

Peter Slattery, lead on the project and a researcher at MIT’s FutureTech group, which studies progress in computing, says the database highlights the fact that some AI risks get more attention than others. More than 70 percent of frameworks mention privacy and security issues, for instance, but only around 40 percent refer to misinformation.

Efforts to catalog and measure AI risks will have to evolve as AI does. Li says it will be important to explore emerging issues such as the emotional stickiness of AI models. Her company recently analyzed the largest and most powerful version of Meta’s Llama 3.1 model. It found that although the model is more capable, it is not much safer, something that reflects a broader disconnect. “Safety is not really improving significantly,” Li says.

Article link: https://www.wired.com/story/ai-models-risk-rank-studies/

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
Like Loading...

Related

Posts navigation

← AI in Precision Persuasion. Unveiling Tactics and Risks on Social Media – NATO
ChatGPT is about to revolutionize the economy. We need to decide what that looks like – MIT Technology Review →
  • Search site

  • Follow healthcarereimagined on WordPress.com
  • Recent Posts

    • Hype Correction – MIT Technology Review 12/15/2025
    • Semantic Collapse – NeurIPS 2025 12/12/2025
    • The arrhythmia of our current age – MIT Technology Review 12/11/2025
    • AI: The Metabolic Mirage 12/09/2025
    • When it all comes crashing down: The aftermath of the AI boom – Bulletin of the Atomic Scientists 12/05/2025
    • Why Digital Transformation—And AI—Demands Systems Thinking – Forbes 12/02/2025
    • How artificial intelligence impacts the US labor market – MIT Sloan 12/01/2025
    • Will quantum computing be chemistry’s next AI? 12/01/2025
    • Ontology is having its moment. 11/28/2025
    • Disconnected Systems Lead to Disconnected Care 11/26/2025
  • Categories

    • Accountable Care Organizations
    • ACOs
    • AHRQ
    • American Board of Internal Medicine
    • Big Data
    • Blue Button
    • Board Certification
    • Cancer Treatment
    • Data Science
    • Digital Services Playbook
    • DoD
    • EHR Interoperability
    • EHR Usability
    • Emergency Medicine
    • FDA
    • FDASIA
    • GAO Reports
    • Genetic Data
    • Genetic Research
    • Genomic Data
    • Global Standards
    • Health Care Costs
    • Health Care Economics
    • Health IT adoption
    • Health Outcomes
    • Healthcare Delivery
    • Healthcare Informatics
    • Healthcare Outcomes
    • Healthcare Security
    • Helathcare Delivery
    • HHS
    • HIPAA
    • ICD-10
    • Innovation
    • Integrated Electronic Health Records
    • IT Acquisition
    • JASONS
    • Lab Report Access
    • Military Health System Reform
    • Mobile Health
    • Mobile Healthcare
    • National Health IT System
    • NSF
    • ONC Reports to Congress
    • Oncology
    • Open Data
    • Patient Centered Medical Home
    • Patient Portals
    • PCMH
    • Precision Medicine
    • Primary Care
    • Public Health
    • Quadruple Aim
    • Quality Measures
    • Rehab Medicine
    • TechFAR Handbook
    • Triple Aim
    • U.S. Air Force Medicine
    • U.S. Army
    • U.S. Army Medicine
    • U.S. Navy Medicine
    • U.S. Surgeon General
    • Uncategorized
    • Value-based Care
    • Veterans Affairs
    • Warrior Transistion Units
    • XPRIZE
  • Archives

    • December 2025 (8)
    • November 2025 (9)
    • October 2025 (10)
    • September 2025 (4)
    • August 2025 (7)
    • July 2025 (2)
    • June 2025 (9)
    • May 2025 (4)
    • April 2025 (11)
    • March 2025 (11)
    • February 2025 (10)
    • January 2025 (12)
    • December 2024 (12)
    • November 2024 (7)
    • October 2024 (5)
    • September 2024 (9)
    • August 2024 (10)
    • July 2024 (13)
    • June 2024 (18)
    • May 2024 (10)
    • April 2024 (19)
    • March 2024 (35)
    • February 2024 (23)
    • January 2024 (16)
    • December 2023 (22)
    • November 2023 (38)
    • October 2023 (24)
    • September 2023 (24)
    • August 2023 (34)
    • July 2023 (33)
    • June 2023 (30)
    • May 2023 (35)
    • April 2023 (30)
    • March 2023 (30)
    • February 2023 (15)
    • January 2023 (17)
    • December 2022 (10)
    • November 2022 (7)
    • October 2022 (22)
    • September 2022 (16)
    • August 2022 (33)
    • July 2022 (28)
    • June 2022 (42)
    • May 2022 (53)
    • April 2022 (35)
    • March 2022 (37)
    • February 2022 (21)
    • January 2022 (28)
    • December 2021 (23)
    • November 2021 (12)
    • October 2021 (10)
    • September 2021 (4)
    • August 2021 (4)
    • July 2021 (4)
    • May 2021 (3)
    • April 2021 (1)
    • March 2021 (2)
    • February 2021 (1)
    • January 2021 (4)
    • December 2020 (7)
    • November 2020 (2)
    • October 2020 (4)
    • September 2020 (7)
    • August 2020 (11)
    • July 2020 (3)
    • June 2020 (5)
    • April 2020 (3)
    • March 2020 (1)
    • February 2020 (1)
    • January 2020 (2)
    • December 2019 (2)
    • November 2019 (1)
    • September 2019 (4)
    • August 2019 (3)
    • July 2019 (5)
    • June 2019 (10)
    • May 2019 (8)
    • April 2019 (6)
    • March 2019 (7)
    • February 2019 (17)
    • January 2019 (14)
    • December 2018 (10)
    • November 2018 (20)
    • October 2018 (14)
    • September 2018 (27)
    • August 2018 (19)
    • July 2018 (16)
    • June 2018 (18)
    • May 2018 (28)
    • April 2018 (3)
    • March 2018 (11)
    • February 2018 (5)
    • January 2018 (10)
    • December 2017 (20)
    • November 2017 (30)
    • October 2017 (33)
    • September 2017 (11)
    • August 2017 (13)
    • July 2017 (9)
    • June 2017 (8)
    • May 2017 (9)
    • April 2017 (4)
    • March 2017 (12)
    • December 2016 (3)
    • September 2016 (4)
    • August 2016 (1)
    • July 2016 (7)
    • June 2016 (7)
    • April 2016 (4)
    • March 2016 (7)
    • February 2016 (1)
    • January 2016 (3)
    • November 2015 (3)
    • October 2015 (2)
    • September 2015 (9)
    • August 2015 (6)
    • June 2015 (5)
    • May 2015 (6)
    • April 2015 (3)
    • March 2015 (16)
    • February 2015 (10)
    • January 2015 (16)
    • December 2014 (9)
    • November 2014 (7)
    • October 2014 (21)
    • September 2014 (8)
    • August 2014 (9)
    • July 2014 (7)
    • June 2014 (5)
    • May 2014 (8)
    • April 2014 (19)
    • March 2014 (8)
    • February 2014 (9)
    • January 2014 (31)
    • December 2013 (23)
    • November 2013 (48)
    • October 2013 (25)
  • Tags

    Business Defense Department Department of Veterans Affairs EHealth EHR Electronic health record Food and Drug Administration Health Health informatics Health Information Exchange Health information technology Health system HIE Hospital IBM Mayo Clinic Medicare Medicine Military Health System Patient Patient portal Patient Protection and Affordable Care Act United States United States Department of Defense United States Department of Veterans Affairs
  • Upcoming Events

Blog at WordPress.com.
  • Reblog
  • Subscribe Subscribed
    • healthcarereimagined
    • Join 154 other subscribers
    • Already have a WordPress.com account? Log in now.
    • healthcarereimagined
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

    %d