healthcarereimagined

Envisioning healthcare for the 21st century

  • About
  • Economics

How should AI-generated content be labeled? – MIT Sloan

Posted by timmreardon on 07/03/2024
Posted in: Uncategorized.

by

Brian Eastwood

 Nov 29, 2023

Why It Matters

Content labels are one way to identify content generated with artificial intelligence. A new study looks at what wording is most effective. Share 

In late October, President Joe Biden issued a wide-ranging executive order on AI security and safety. The order includes new standards and best practices for clearly labeling AI-generated content, in part to help Americans determine whether communications that appear to be from the government are authentic.

This points to a concern that as generative AI becomes more widely used, manipulated content could easily spread false information. As the executive order indicates, content labels are one strategy for combatting the spread of misinformation. But what are the right terms to use? Which ones will be widely understood by the public as indicating that something has been generated or manipulated by artificial intelligence technology or is intentionally misleading?

A new working paper co-authored by MIT Sloan professor David Rand found that across the United States, Mexico, Brazil, India, and China, people associated certain terms, such as “AI generated” and “AI manipulated,” most closely with content created using AI. Conversely, the labels “deepfake” and “manipulated” were most associated with misleading content, whether AI created it or not.

These results show that most people have a reasonable understanding of what “AI” means, which is a good starting point. They also suggest that any effort to label content needs to consider the overarching goal, said Rand, a professor of management science and brain and cognitive sciences. Rand co-authored the paper with Ziv Epstein, SM ’19 and PhD ’23, a postdoctoral fellow at Stanford; MIT graduate researcher Cathy Fang, SM ’23; and Antonio A. Arechar, a professor at the Center for Research and Teaching in Economics in Aguascalientes, Mexico.

Rand also co-authored a recent policy brief about labeling AI-generated content. 

“A lot of AI-generated content is not misleading, and a lot of misleading content is not AI-generated,” Rand said. “Is the concern really about AI-generated content per se, or is it more about misleading content?”

Looking at how people understand various AI-related terms 

Governments, technology companies, and industry associations are wrestling with how to let viewers know that they are viewing artificially generated content, given that face-swapping and voice imitation tools can be used to create misleading content, and images can be generated that falsely depict people in compromising situations.

In addition to the recent executive order, U.S. Rep. Ritchie Torres has proposed the AI Disclosure Act of 2023, which would require a disclaimer on any content — including videos, photos, text, or audio — generated by AI. Meanwhile, the Coalition for Content Provenance and Authenticityhas developed an open technical standard for tracing the origins of content and determining whether it has been manipulated.

Disclaimers, watermarks, or other labels would be useful to indicate how content was created or whether it is misleading; in fact, studies have indicated that social media users are less likely to believe or share content labeled as misleading. But before trying to label content that is generated by AI, platforms and policymakers need to know which terms are widely understood by the general population. If labels use a term that is overly jargony or confusing, it could interfere with the label’s goal.

To look at what terms were understood correctly most often, the researchers surveyed more than 5,100 people across five countries in four languages. Participants were randomly assigned one of nine terms: “AI generated,” “generated with an AI tool,” “artificial,” “synthetic,” “deepfake,” “manipulated,” “not real,” “AI manipulated,” or “edited.” They were then shown descriptions of 20 different content types and asked whether the assigned term applied to each type of content.

The phrases “AI generated,” “generated with an AI tool,” and “AI manipulated” were most closely associated with content generated using AI.

Alternatively, the researchers found that “deepfake” and “manipulated” were most closely associated with potentially misleading content. Terms such as “edited,” “synthetic,” or “not real” were not closely associated with either AI-generated content or misleading content.

The results were similar among the participants, regardless of age, gender, education, digital literacy, and familiarity with AI.

“The differences between ‘AI manipulated’and ‘manipulated’ are quite striking: Simply adding the ‘AI’ qualifier dramatically changed which pieces of content participants understood the term as applying [to],” the researchers write.

The purpose of an AI label 

Content labels could serve two different purposes. One is to indicate that content was generated using AI. The other is to show that the content could mislead viewers, whether created by AI or not. That will be an important consideration as momentum builds to label AI generated content.

RELATED ARTICLES

The legal issues presented by generative AI AI needs to be more ‘pro-worker.’ These 5 policies can help MIT Sloan research about social media and misinformation

“It could make sense to have different labels for misleading content that is AI-generated, versus content that’s not AI-generated,” Rand said.

How the labels are generated will also matter. Self-labeling has obvious disadvantages, as few creators will willingly admit that their content is intentionally misleading. Machine learning, crowdsourcing, and digital forensics are viable options, though relying on those approaches will become more challenging as the lines between content made by humans and generated by computers continue to blur. And under the principle of implied authenticity, the more content that gets labeled, the more that content without a label is assumed to be real.

Finally, researchers found that some labels will not work everywhere. For example, in the study, Chinese speakers associated the word “artificial” with human involvement, whereas the term connotes automation in English, Portuguese, and Spanish.

“You can’t just take labels shown to work well in the United States and blindly apply them cross-culturally,” Rand said. “Testing of labels will need to be done in different countries to ensure that terms resonate.”

READ THE PAPER: WHAT LABEL SHOULD BE APPLIED TO CONTENT PRODUCED BY GENERATIVE AI?

READ NEXT: STUDY GAUGES HOW PEOPLE PERCEIVE AI-GENERATED CONTENT

Article link: https://mitsloan.mit.edu/ideas-made-to-matter/how-should-ai-generated-content-be-labeled?

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
Like Loading...

Related

Posts navigation

← AI Security
Cryptography may offer a solution to the massive AI-labeling problem  →
  • Search site

  • Follow healthcarereimagined on WordPress.com
  • Recent Posts

    • Hype Correction – MIT Technology Review 12/15/2025
    • Semantic Collapse – NeurIPS 2025 12/12/2025
    • The arrhythmia of our current age – MIT Technology Review 12/11/2025
    • AI: The Metabolic Mirage 12/09/2025
    • When it all comes crashing down: The aftermath of the AI boom – Bulletin of the Atomic Scientists 12/05/2025
    • Why Digital Transformation—And AI—Demands Systems Thinking – Forbes 12/02/2025
    • How artificial intelligence impacts the US labor market – MIT Sloan 12/01/2025
    • Will quantum computing be chemistry’s next AI? 12/01/2025
    • Ontology is having its moment. 11/28/2025
    • Disconnected Systems Lead to Disconnected Care 11/26/2025
  • Categories

    • Accountable Care Organizations
    • ACOs
    • AHRQ
    • American Board of Internal Medicine
    • Big Data
    • Blue Button
    • Board Certification
    • Cancer Treatment
    • Data Science
    • Digital Services Playbook
    • DoD
    • EHR Interoperability
    • EHR Usability
    • Emergency Medicine
    • FDA
    • FDASIA
    • GAO Reports
    • Genetic Data
    • Genetic Research
    • Genomic Data
    • Global Standards
    • Health Care Costs
    • Health Care Economics
    • Health IT adoption
    • Health Outcomes
    • Healthcare Delivery
    • Healthcare Informatics
    • Healthcare Outcomes
    • Healthcare Security
    • Helathcare Delivery
    • HHS
    • HIPAA
    • ICD-10
    • Innovation
    • Integrated Electronic Health Records
    • IT Acquisition
    • JASONS
    • Lab Report Access
    • Military Health System Reform
    • Mobile Health
    • Mobile Healthcare
    • National Health IT System
    • NSF
    • ONC Reports to Congress
    • Oncology
    • Open Data
    • Patient Centered Medical Home
    • Patient Portals
    • PCMH
    • Precision Medicine
    • Primary Care
    • Public Health
    • Quadruple Aim
    • Quality Measures
    • Rehab Medicine
    • TechFAR Handbook
    • Triple Aim
    • U.S. Air Force Medicine
    • U.S. Army
    • U.S. Army Medicine
    • U.S. Navy Medicine
    • U.S. Surgeon General
    • Uncategorized
    • Value-based Care
    • Veterans Affairs
    • Warrior Transistion Units
    • XPRIZE
  • Archives

    • December 2025 (8)
    • November 2025 (9)
    • October 2025 (10)
    • September 2025 (4)
    • August 2025 (7)
    • July 2025 (2)
    • June 2025 (9)
    • May 2025 (4)
    • April 2025 (11)
    • March 2025 (11)
    • February 2025 (10)
    • January 2025 (12)
    • December 2024 (12)
    • November 2024 (7)
    • October 2024 (5)
    • September 2024 (9)
    • August 2024 (10)
    • July 2024 (13)
    • June 2024 (18)
    • May 2024 (10)
    • April 2024 (19)
    • March 2024 (35)
    • February 2024 (23)
    • January 2024 (16)
    • December 2023 (22)
    • November 2023 (38)
    • October 2023 (24)
    • September 2023 (24)
    • August 2023 (34)
    • July 2023 (33)
    • June 2023 (30)
    • May 2023 (35)
    • April 2023 (30)
    • March 2023 (30)
    • February 2023 (15)
    • January 2023 (17)
    • December 2022 (10)
    • November 2022 (7)
    • October 2022 (22)
    • September 2022 (16)
    • August 2022 (33)
    • July 2022 (28)
    • June 2022 (42)
    • May 2022 (53)
    • April 2022 (35)
    • March 2022 (37)
    • February 2022 (21)
    • January 2022 (28)
    • December 2021 (23)
    • November 2021 (12)
    • October 2021 (10)
    • September 2021 (4)
    • August 2021 (4)
    • July 2021 (4)
    • May 2021 (3)
    • April 2021 (1)
    • March 2021 (2)
    • February 2021 (1)
    • January 2021 (4)
    • December 2020 (7)
    • November 2020 (2)
    • October 2020 (4)
    • September 2020 (7)
    • August 2020 (11)
    • July 2020 (3)
    • June 2020 (5)
    • April 2020 (3)
    • March 2020 (1)
    • February 2020 (1)
    • January 2020 (2)
    • December 2019 (2)
    • November 2019 (1)
    • September 2019 (4)
    • August 2019 (3)
    • July 2019 (5)
    • June 2019 (10)
    • May 2019 (8)
    • April 2019 (6)
    • March 2019 (7)
    • February 2019 (17)
    • January 2019 (14)
    • December 2018 (10)
    • November 2018 (20)
    • October 2018 (14)
    • September 2018 (27)
    • August 2018 (19)
    • July 2018 (16)
    • June 2018 (18)
    • May 2018 (28)
    • April 2018 (3)
    • March 2018 (11)
    • February 2018 (5)
    • January 2018 (10)
    • December 2017 (20)
    • November 2017 (30)
    • October 2017 (33)
    • September 2017 (11)
    • August 2017 (13)
    • July 2017 (9)
    • June 2017 (8)
    • May 2017 (9)
    • April 2017 (4)
    • March 2017 (12)
    • December 2016 (3)
    • September 2016 (4)
    • August 2016 (1)
    • July 2016 (7)
    • June 2016 (7)
    • April 2016 (4)
    • March 2016 (7)
    • February 2016 (1)
    • January 2016 (3)
    • November 2015 (3)
    • October 2015 (2)
    • September 2015 (9)
    • August 2015 (6)
    • June 2015 (5)
    • May 2015 (6)
    • April 2015 (3)
    • March 2015 (16)
    • February 2015 (10)
    • January 2015 (16)
    • December 2014 (9)
    • November 2014 (7)
    • October 2014 (21)
    • September 2014 (8)
    • August 2014 (9)
    • July 2014 (7)
    • June 2014 (5)
    • May 2014 (8)
    • April 2014 (19)
    • March 2014 (8)
    • February 2014 (9)
    • January 2014 (31)
    • December 2013 (23)
    • November 2013 (48)
    • October 2013 (25)
  • Tags

    Business Defense Department Department of Veterans Affairs EHealth EHR Electronic health record Food and Drug Administration Health Health informatics Health Information Exchange Health information technology Health system HIE Hospital IBM Mayo Clinic Medicare Medicine Military Health System Patient Patient portal Patient Protection and Affordable Care Act United States United States Department of Defense United States Department of Veterans Affairs
  • Upcoming Events

Blog at WordPress.com.
  • Reblog
  • Subscribe Subscribed
    • healthcarereimagined
    • Join 154 other subscribers
    • Already have a WordPress.com account? Log in now.
    • healthcarereimagined
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

    %d