healthcarereimagined

Envisioning healthcare for the 21st century

  • About
  • Economics

AI Report Shows ‘Startlingly Rapid’ Progress—And Ballooning Costs – Scientific American

Posted by timmreardon on 04/26/2024
Posted in: Uncategorized.

A new report finds that AI matches or outperforms people at tasks such as competitive math and reading comprehension

BY NICOLA JONES & NATURE MAGAZINE

Artificial intelligence (AI) systems, such as the chatbot ChatGPT, have become so advanced that they now very nearly match or exceed human performance in tasks including reading comprehension, image classification and competition-level mathematics, according to a new report. Rapid progress in the development of these systems also means that many common benchmarks and tests for assessing them are quickly becoming obsolete.

These are just a few of the top-line findings from the Artificial Intelligence Index Report 2024, which was published on 15 April by the Institute for Human-Centered Artificial Intelligence at Stanford University in California. The report charts the meteoric progress in machine-learning systems over the past decade.

In particular, the report says, new ways of assessing AI — for example, evaluating their performance on complex tasks, such as abstraction and reasoning — are more and more necessary. “A decade ago, benchmarks would serve the community for 5–10 years” whereas now they often become irrelevant in just a few years, says Nestor Maslej, a social scientist at Stanford and editor-in-chief of the AI Index. “The pace of gain has been startlingly rapid.”

Stanford’s annual AI Index, first published in 2017, is compiled by a group of academic and industry specialists to assess the field’s technical capabilities, costs, ethics and more — with an eye towards informing researchers, policymakers and the public. This year’s report, which is more than 400 pages long and was copy-edited and tightened with the aid of AI tools, notes that AI-related regulation in the United States is sharply rising. But the lack of standardized assessments for responsible use of AI makes it difficult to compare systems in terms of the risks that they pose.

The rising use of AI in science is also highlighted in this year’s edition: for the first time, it dedicates an entire chapter to science applications, highlighting projects including Graph Networks for Materials Exploration (GNoME), a project from Google DeepMind that aims to help chemists discover materials, and GraphCast, another DeepMind tool, which does rapid weather forecasting.

GROWING UP

The current AI boom — built on neural networks and machine-learning algorithms — dates back to the early 2010s. The field has since rapidly expanded. For example, the number of AI coding projects on GitHub, a common platform for sharing code, increased from about 800 in 2011 to 1.8 million last year. And journal publications about AI roughly tripled over this period, the report says.

Much of the cutting-edge work on AI is being done in industry: that sector produced 51 notable machine-learning systems last year, whereas academic researchers contributed 15. “Academic work is shifting to analysing the models coming out of companies — doing a deeper dive into their weaknesses,” says Raymond Mooney, director of the AI Lab at the University of Texas at Austin, who wasn’t involved in the report.

That includes developing tougher tests to assess the visual, mathematical and even moral-reasoning capabilities of large language models (LLMs), which power chatbots. One of the latest tests is the Graduate-Level Google-Proof Q&A Benchmark (GPQA), developed last year by a team including machine-learning researcher David Rein at New York University.

The GPQA, consisting of more than 400 multiple-choice questions, is tough: PhD-level scholars could correctly answer questions in their field 65% of the time. The same scholars, when attempting to answer questions outside their field, scored only 34%, despite having access to the Internet during the test (randomly selecting answers would yield a score of 25%). As of last year, AI systems scored about 30–40%. This year, Rein says, Claude 3 — the latest chatbot released by AI company Anthropic, based in San Francisco, California — scored about 60%. “The rate of progress is pretty shocking to a lot of people, me included,” Rein adds. “It’s quite difficult to make a benchmark that survives for more than a few years.”

COST OF BUSINESS

As performance is skyrocketing, so are costs. GPT-4 — the LLM that powers ChatGPT and that was released in March 2023 by San Francisco-based firm OpenAI — reportedly cost US$78 million to train. Google’s chatbot Gemini Ultra, launched in December, cost $191 million. Many people are concerned about the energy use of these systems, as well as the amount of water needed to cool the data centres that help to run them. “These systems are impressive, but they’re also very inefficient,” Maslej says.

Costs and energy use for AI models are high in large part because one of the main ways to make current systems better is to make them bigger. This means training them on ever-larger stocks of text and images. The AI Index notes that some researchers now worry about running out of training data. Last year, according to the report, the non-profit research institute Epoch projected that we might exhaust supplies of high-quality language data as soon as this year. (However, the institute’s most recent analysis suggests that 2028 is a better estimate.)

Ethical concerns about how AI is built and used are also mounting. “People are way more nervous about AI than ever before, both in the United States and across the globe,” says Maslej, who sees signs of a growing international divide. “There are now some countries very excited about AI, and others that are very pessimistic.”

In the United States, the report notes a steep rise in regulatory interest. In 2016, there was just one US regulation that mentioned AI; last year, there were 25. “After 2022, there’s a massive spike in the number of AI-related bills that have been proposed” by policymakers, Maslej says.

Regulatory action is increasingly focused on promoting responsible AI use. Although benchmarks are emerging that can score metrics such as an AI tool’s truthfulness, bias and even likability, not everyone is using the same models, Maslej says, which makes cross-comparisons hard. “This is a really important topic,” he says. “We need to bring the community together on this.”

This article is reproduced with permission and was first published on April 15, 2024.

Article link: https://www.scientificamerican.com/article/stanford-ai-index-rapid-progress/?

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
Like Loading...

Related

Posts navigation

← Advanced SAM.gov | Understanding Notice Types
Who should be the head of generative AI — and what they should do – MIT Sloan Management →
  • Search site

  • Follow healthcarereimagined on WordPress.com
  • Recent Posts

    • Hype Correction – MIT Technology Review 12/15/2025
    • Semantic Collapse – NeurIPS 2025 12/12/2025
    • The arrhythmia of our current age – MIT Technology Review 12/11/2025
    • AI: The Metabolic Mirage 12/09/2025
    • When it all comes crashing down: The aftermath of the AI boom – Bulletin of the Atomic Scientists 12/05/2025
    • Why Digital Transformation—And AI—Demands Systems Thinking – Forbes 12/02/2025
    • How artificial intelligence impacts the US labor market – MIT Sloan 12/01/2025
    • Will quantum computing be chemistry’s next AI? 12/01/2025
    • Ontology is having its moment. 11/28/2025
    • Disconnected Systems Lead to Disconnected Care 11/26/2025
  • Categories

    • Accountable Care Organizations
    • ACOs
    • AHRQ
    • American Board of Internal Medicine
    • Big Data
    • Blue Button
    • Board Certification
    • Cancer Treatment
    • Data Science
    • Digital Services Playbook
    • DoD
    • EHR Interoperability
    • EHR Usability
    • Emergency Medicine
    • FDA
    • FDASIA
    • GAO Reports
    • Genetic Data
    • Genetic Research
    • Genomic Data
    • Global Standards
    • Health Care Costs
    • Health Care Economics
    • Health IT adoption
    • Health Outcomes
    • Healthcare Delivery
    • Healthcare Informatics
    • Healthcare Outcomes
    • Healthcare Security
    • Helathcare Delivery
    • HHS
    • HIPAA
    • ICD-10
    • Innovation
    • Integrated Electronic Health Records
    • IT Acquisition
    • JASONS
    • Lab Report Access
    • Military Health System Reform
    • Mobile Health
    • Mobile Healthcare
    • National Health IT System
    • NSF
    • ONC Reports to Congress
    • Oncology
    • Open Data
    • Patient Centered Medical Home
    • Patient Portals
    • PCMH
    • Precision Medicine
    • Primary Care
    • Public Health
    • Quadruple Aim
    • Quality Measures
    • Rehab Medicine
    • TechFAR Handbook
    • Triple Aim
    • U.S. Air Force Medicine
    • U.S. Army
    • U.S. Army Medicine
    • U.S. Navy Medicine
    • U.S. Surgeon General
    • Uncategorized
    • Value-based Care
    • Veterans Affairs
    • Warrior Transistion Units
    • XPRIZE
  • Archives

    • December 2025 (8)
    • November 2025 (9)
    • October 2025 (10)
    • September 2025 (4)
    • August 2025 (7)
    • July 2025 (2)
    • June 2025 (9)
    • May 2025 (4)
    • April 2025 (11)
    • March 2025 (11)
    • February 2025 (10)
    • January 2025 (12)
    • December 2024 (12)
    • November 2024 (7)
    • October 2024 (5)
    • September 2024 (9)
    • August 2024 (10)
    • July 2024 (13)
    • June 2024 (18)
    • May 2024 (10)
    • April 2024 (19)
    • March 2024 (35)
    • February 2024 (23)
    • January 2024 (16)
    • December 2023 (22)
    • November 2023 (38)
    • October 2023 (24)
    • September 2023 (24)
    • August 2023 (34)
    • July 2023 (33)
    • June 2023 (30)
    • May 2023 (35)
    • April 2023 (30)
    • March 2023 (30)
    • February 2023 (15)
    • January 2023 (17)
    • December 2022 (10)
    • November 2022 (7)
    • October 2022 (22)
    • September 2022 (16)
    • August 2022 (33)
    • July 2022 (28)
    • June 2022 (42)
    • May 2022 (53)
    • April 2022 (35)
    • March 2022 (37)
    • February 2022 (21)
    • January 2022 (28)
    • December 2021 (23)
    • November 2021 (12)
    • October 2021 (10)
    • September 2021 (4)
    • August 2021 (4)
    • July 2021 (4)
    • May 2021 (3)
    • April 2021 (1)
    • March 2021 (2)
    • February 2021 (1)
    • January 2021 (4)
    • December 2020 (7)
    • November 2020 (2)
    • October 2020 (4)
    • September 2020 (7)
    • August 2020 (11)
    • July 2020 (3)
    • June 2020 (5)
    • April 2020 (3)
    • March 2020 (1)
    • February 2020 (1)
    • January 2020 (2)
    • December 2019 (2)
    • November 2019 (1)
    • September 2019 (4)
    • August 2019 (3)
    • July 2019 (5)
    • June 2019 (10)
    • May 2019 (8)
    • April 2019 (6)
    • March 2019 (7)
    • February 2019 (17)
    • January 2019 (14)
    • December 2018 (10)
    • November 2018 (20)
    • October 2018 (14)
    • September 2018 (27)
    • August 2018 (19)
    • July 2018 (16)
    • June 2018 (18)
    • May 2018 (28)
    • April 2018 (3)
    • March 2018 (11)
    • February 2018 (5)
    • January 2018 (10)
    • December 2017 (20)
    • November 2017 (30)
    • October 2017 (33)
    • September 2017 (11)
    • August 2017 (13)
    • July 2017 (9)
    • June 2017 (8)
    • May 2017 (9)
    • April 2017 (4)
    • March 2017 (12)
    • December 2016 (3)
    • September 2016 (4)
    • August 2016 (1)
    • July 2016 (7)
    • June 2016 (7)
    • April 2016 (4)
    • March 2016 (7)
    • February 2016 (1)
    • January 2016 (3)
    • November 2015 (3)
    • October 2015 (2)
    • September 2015 (9)
    • August 2015 (6)
    • June 2015 (5)
    • May 2015 (6)
    • April 2015 (3)
    • March 2015 (16)
    • February 2015 (10)
    • January 2015 (16)
    • December 2014 (9)
    • November 2014 (7)
    • October 2014 (21)
    • September 2014 (8)
    • August 2014 (9)
    • July 2014 (7)
    • June 2014 (5)
    • May 2014 (8)
    • April 2014 (19)
    • March 2014 (8)
    • February 2014 (9)
    • January 2014 (31)
    • December 2013 (23)
    • November 2013 (48)
    • October 2013 (25)
  • Tags

    Business Defense Department Department of Veterans Affairs EHealth EHR Electronic health record Food and Drug Administration Health Health informatics Health Information Exchange Health information technology Health system HIE Hospital IBM Mayo Clinic Medicare Medicine Military Health System Patient Patient portal Patient Protection and Affordable Care Act United States United States Department of Defense United States Department of Veterans Affairs
  • Upcoming Events

Blog at WordPress.com.
  • Reblog
  • Subscribe Subscribed
    • healthcarereimagined
    • Join 154 other subscribers
    • Already have a WordPress.com account? Log in now.
    • healthcarereimagined
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

    %d