healthcarereimagined

Envisioning healthcare for the 21st century

  • About
  • Economics

Quantum Computing’s Hard, Cold Reality Check – IEEE Spectrum

Posted by timmreardon on 12/25/2023
Posted in: Uncategorized.

Hype is everywhere, skeptics say, and practical applications are still far away

By EDD GENT

22 DEC 2023 6 MIN READ

The quantum computer revolutionmay be further off and more limited than many have been led to believe. That’s the message coming from a small but vocal set of prominent skeptics in and around the emerging quantum computingindustry.

Quantum computers have been touted as a solution to a wide range of problems, including financial modeling,  optimizing logistics, and accelerating machine learning. Some of the more ambitious timelines proposed by quantum computing companies have suggested these machines could be impacting real-world problems in just a handful of years. But there’s growing pushback against what many see as unrealistic expectations for the technology.

Meta’s LeCun—Not so fast, qubit

Meta’s head of AI research Yann LeCun recently made headlinesafter pouring cold water on the prospect of quantum computers making a meaningful contribution in the near future. Speaking at a media event celebrating the 10-year anniversary of Meta’s Fundamental AI Research team he said the technology is “a fascinating scientific topic,” but that he was less convinced of “the possibility of actually fabricating quantum computers that are actually useful.”

While LeCun is not an expert in quantum computing, leading figures in the field are also sounding a note of caution. Oskar Painter, head of quantum hardware for AmazonWeb Services, says there is a “tremendous amount of hype” in the industry at the minute and “it can be difficult to filter the optimistic from the completely unrealistic.”

A fundamental challenge for today’s quantum computers is that they are very prone to errors. Some have suggested that these so-called “noisy intermediate-scale quantum” (NISQ) processors could still be put to useful work. But Painter says there’s growing recognition that this is unlikely and quantum error-correction schemes will be key to achieving practical quantum computers.

“We found out over the last 10 years that many things that people have proposed don’t work. And then we found some very simple reasons for that.”
—Matthias Troyer, Microsoft

The leading proposal involves spreading information over many physical qubits to create “logical qubits” that are more robust, but this could require as many as 1,000 physical qubits for each logical one. Some have suggested that quantum error correction could even be fundamentally impossible, though that is not a mainstream view. Either way, realizing these schemes at the scale and speeds required remains a distant goal, Painter says. 

“Given the remaining technical challenges in realizing a fault-tolerant quantum computer capable of running billions of gates over thousands of qubits, it is difficult to put a timeline on it, but I would estimate at least a decade out,” he says.

Microsoft—Clarity, please

The problem isn’t just one of timescales. In May, Matthias Troyer, a technical fellow at Microsoft who leads the company’s quantum computing efforts, co-authored a paper in Communications of the ACMsuggesting that the number of applications where quantum computers could provide a meaningful advantage was more limited than some might have you believe.

“We found out over the last 10 years that many things that people have proposed don’t work,” he says. “And then we found some very simple reasons for that.”

The main promise of quantum computing is the ability to solve problems far faster than classical computers, but exactly how much faster varies. There are two applications where quantum algorithms appear to provide an exponential speed up, says Troyer. One is factoring large numbers, which could make it possible to break the public key encryption the internet is built on. The other is simulating quantum systems, which could have applications in chemistry and materials science.

Quantum algorithms have been proposed for a range of other problems including optimization, drug design, and fluid dynamics. But touted speedups don’t always pan out—sometimes amounting to a quadratic gain, meaning the time it takes the quantum algorithm to solve a problem is the square root of the time taken by its classical counterpart.

Troyer says these gains can quickly be wiped out by the massive computational overhead incurred by quantum computers. Operating a qubit is far more complicated than switching a transistor and is therefore orders of magnitude slower. This means that for smaller problems, a classical computer will always be faster, and the point at which the quantum computer gains a lead depends on how quickly the complexity of the classical algorithm scales.

Operating a qubit is far more complicated than switching a transistor and is therefore orders of magnitude slower.

Troyer and his colleagues compared a single Nvidia A100 GPU against a fictional future fault-tolerant quantum computer with 10,000 “logical qubits” and gates times much faster than today’s devices. Troyer says they found that a quantum algorithm with a quadratic speed up would have to run for centuries, or even millenia, before it could outperform a classical one on problems big enough to be useful.

Another significant barrier is data bandwidth. Qubits’ slow operating speeds fundamentally limit the rate at which you can get classical data in and out of a quantum computer. Even in optimistic future scenarios this is likely to be thousands or millions of times slower than classical computers, says Troyer. That means data-intensive applications like machine learning or searching databases are almost certainly out of reach for the foreseeable future.

The conclusion, says Troyer, was that quantum computers will only really shine on small-data problems with exponential speed ups. “All the rest is beautiful theory, but will not be practical,” he adds.

The paper didn’t make much of an impact in the quantum community, says Troyer, but many of Microsoft customers were grateful to get some clarity on realistic applications for quantum computing. He says they’ve seen a number of companies downsize or even shutdown their quantum computing teams, including in the finance and life sciences sectors.

Aaronson—Welcome, skeptics

These limitations shouldn’t really be a surprise to anyone who has been paying close attention to quantum computing research, says Scott Aaronson, a professor of computer science at the University of Texas at Austin. “There are these claims about how quantum computing will revolutionize machine learning and optimization and finance and all these industries, where I think skepticism was always warranted,” he says. “If people are just now coming around to that, well then, welcome.”

While he also thinks practical applications are still a long way off, recent progress in the field has actually given him cause for optimism. Earlier this month researchers from quantum computing startup QuEra and Harvard demonstrated that they could use a 280 qubit processor to generate 48 logical qubits–far more than previous experiments have managed. “This was definitely the biggest experimental advance maybe for several years,” says Aaronson.

“When you say quantum is going to solve all the world’s problems, and then it doesn’t, or it doesn’t right now, that creates a little bit of a letdown.”
—Yuval Boger, QuEra

Yuval Boger, chief marketing officer at QuEra, is keen to stress that the experiment was a lab demonstration, but he thinks the results have caused some to reassess their timescales for fault-tolerant quantum computing. At the same time though, he says they have also noticed a trend of companies quietly shifting resources away from quantum computing.

This has been driven, in part, by growing interest in AI since the advent of large language models, he says. But he agrees that some in the industry have exaggerated the near-term potential of the technology, and says the hype has been a double-edged sword. “It helps get investments and get talented people excited to get into the field,” he says. “But on the other hand, when you say quantum is going to solve all the world’s problems, and then it doesn’t, or it doesn’t right now, that creates a little bit of a letdown.”

Even in the areas where quantum computers look most promising, the applications could be narrower than initially hoped. In recent years, papers from researchers at scientific software company Schrödinger and a multi-institutional team have suggested that only a limited number of problems in quantum chemistry are likely to benefit from quantum speedups.

Merck KGaA—Lovely accelerator, sometimes

It’s also important to remember that many companies already have mature and productive quantum chemistry workflows that operate on classical hardware, says Philipp Harbach, global head of group digital innovation at German pharma giant Merck KGaA, in Darmstadt, Germany (not to be confused with the American company Merck). 

“In the public, the quantum computer was portrayed as if it would enable something not currently achievable, which is inaccurate,” he says. “Primarily, it will accelerate existing processes rather than introducing a completely disruptive new application area. So we are evaluating a difference here.”

Harbach’s group has been investigating the relevance of quantum computing to Merck’s work for about six years. While NISQ devices may potentially have uses for some certain highly specialized problems, they’ve concluded that quantum computing will not have a significant impact on industry until fault-tolerance is achieved. Even then, how transformative that impact could be really depends on the specific use case and products a company is working on, says Harbach.

Quantum computers shine at providing accurate solutions to problems that become intractable at larger scales for classical computers. That could be very useful for some applications, such as designing new catalysts, says Harbach. But most of the chemistry problems Merck is interested in involve screening large numbers of candidate molecules very quickly.

“Most problems in quantum chemistry do not scale exponentially, and approximations are sufficient,” he says. “They are well behaved problems, you just need to make them faster with increased system size.”

Nonetheless, there can still be cause for optimism, says Microsoft’s Troyer. Even if quantum computers can only tackle a limited palette of problems in areas like chemistry and materials science, the impact could still be game-changing. “We talk about the Stone Age and the Bronze Age, and the Iron Age, and the Silicon Age, so materials have a huge impact on mankind,” he says.

The goal of airing some skepticism, Troyer says, is not to diminish interest in the field, but to ensure that researchers are focused on the most promising applications of quantum computing with the greatest chance of impact.

Article link: https://spectrum.ieee.org/quantum-computing-skeptics

FROM YOUR SITE ARTICLES

  • Quantum Computing for Dummies ›
  • The Case Against Quantum Computing ›

RELATED ARTICLES AROUND THE WEB

  • What Is Quantum Computing? | Caltech Science Exchange ›
  • What is Quantum Computing? – Quantum Computing Explained – AWS ›

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
Like Loading...

Related

Posts navigation

← Generative AI research from MIT Sloan
The State of the Federal EHR – FEHRM →
  • Search site

  • Follow healthcarereimagined on WordPress.com
  • Recent Posts

    • Why AI for good depends on good data – Amazon Science 11/12/2025
    • Are hospitals and health systems really ready for AI? – Healthcare IT News 11/08/2025
    • Make no mistake—AI is owned by Big Tech – MIT Technology Review 10/30/2025
    • AI implementation strategies: 4 insights from MIT Sloan Management Review 10/30/2025
    • New MIT report captures state of quantum computing – MIT Sloan 10/27/2025
    • Introducing Quantum Echoes: a breakthrough algorithm on our Willow quantum chip – Google Research 10/22/2025
    • Tell me about QUANTUM COMPUTING in 2-minutes or less, using language my kid can understand. 10/17/2025
    • Why some quantum materials stall while others scale – MIT News 10/15/2025
    • What’s next for AI in 2025 – MIT Technology Review 10/11/2025
    • Harvard researchers hail quantum computing breakthrough with machine that can run for two hours — atomic loss quashed by experimental design, systems that can run forever just 3 years away 10/08/2025
  • Categories

    • Accountable Care Organizations
    • ACOs
    • AHRQ
    • American Board of Internal Medicine
    • Big Data
    • Blue Button
    • Board Certification
    • Cancer Treatment
    • Data Science
    • Digital Services Playbook
    • DoD
    • EHR Interoperability
    • EHR Usability
    • Emergency Medicine
    • FDA
    • FDASIA
    • GAO Reports
    • Genetic Data
    • Genetic Research
    • Genomic Data
    • Global Standards
    • Health Care Costs
    • Health Care Economics
    • Health IT adoption
    • Health Outcomes
    • Healthcare Delivery
    • Healthcare Informatics
    • Healthcare Outcomes
    • Healthcare Security
    • Helathcare Delivery
    • HHS
    • HIPAA
    • ICD-10
    • Innovation
    • Integrated Electronic Health Records
    • IT Acquisition
    • JASONS
    • Lab Report Access
    • Military Health System Reform
    • Mobile Health
    • Mobile Healthcare
    • National Health IT System
    • NSF
    • ONC Reports to Congress
    • Oncology
    • Open Data
    • Patient Centered Medical Home
    • Patient Portals
    • PCMH
    • Precision Medicine
    • Primary Care
    • Public Health
    • Quadruple Aim
    • Quality Measures
    • Rehab Medicine
    • TechFAR Handbook
    • Triple Aim
    • U.S. Air Force Medicine
    • U.S. Army
    • U.S. Army Medicine
    • U.S. Navy Medicine
    • U.S. Surgeon General
    • Uncategorized
    • Value-based Care
    • Veterans Affairs
    • Warrior Transistion Units
    • XPRIZE
  • Archives

    • November 2025 (2)
    • October 2025 (10)
    • September 2025 (4)
    • August 2025 (7)
    • July 2025 (2)
    • June 2025 (9)
    • May 2025 (4)
    • April 2025 (11)
    • March 2025 (11)
    • February 2025 (10)
    • January 2025 (12)
    • December 2024 (12)
    • November 2024 (7)
    • October 2024 (5)
    • September 2024 (9)
    • August 2024 (10)
    • July 2024 (13)
    • June 2024 (18)
    • May 2024 (10)
    • April 2024 (19)
    • March 2024 (35)
    • February 2024 (23)
    • January 2024 (16)
    • December 2023 (22)
    • November 2023 (38)
    • October 2023 (24)
    • September 2023 (24)
    • August 2023 (34)
    • July 2023 (33)
    • June 2023 (30)
    • May 2023 (35)
    • April 2023 (30)
    • March 2023 (30)
    • February 2023 (15)
    • January 2023 (17)
    • December 2022 (10)
    • November 2022 (7)
    • October 2022 (22)
    • September 2022 (16)
    • August 2022 (33)
    • July 2022 (28)
    • June 2022 (42)
    • May 2022 (53)
    • April 2022 (35)
    • March 2022 (37)
    • February 2022 (21)
    • January 2022 (28)
    • December 2021 (23)
    • November 2021 (12)
    • October 2021 (10)
    • September 2021 (4)
    • August 2021 (4)
    • July 2021 (4)
    • May 2021 (3)
    • April 2021 (1)
    • March 2021 (2)
    • February 2021 (1)
    • January 2021 (4)
    • December 2020 (7)
    • November 2020 (2)
    • October 2020 (4)
    • September 2020 (7)
    • August 2020 (11)
    • July 2020 (3)
    • June 2020 (5)
    • April 2020 (3)
    • March 2020 (1)
    • February 2020 (1)
    • January 2020 (2)
    • December 2019 (2)
    • November 2019 (1)
    • September 2019 (4)
    • August 2019 (3)
    • July 2019 (5)
    • June 2019 (10)
    • May 2019 (8)
    • April 2019 (6)
    • March 2019 (7)
    • February 2019 (17)
    • January 2019 (14)
    • December 2018 (10)
    • November 2018 (20)
    • October 2018 (14)
    • September 2018 (27)
    • August 2018 (19)
    • July 2018 (16)
    • June 2018 (18)
    • May 2018 (28)
    • April 2018 (3)
    • March 2018 (11)
    • February 2018 (5)
    • January 2018 (10)
    • December 2017 (20)
    • November 2017 (30)
    • October 2017 (33)
    • September 2017 (11)
    • August 2017 (13)
    • July 2017 (9)
    • June 2017 (8)
    • May 2017 (9)
    • April 2017 (4)
    • March 2017 (12)
    • December 2016 (3)
    • September 2016 (4)
    • August 2016 (1)
    • July 2016 (7)
    • June 2016 (7)
    • April 2016 (4)
    • March 2016 (7)
    • February 2016 (1)
    • January 2016 (3)
    • November 2015 (3)
    • October 2015 (2)
    • September 2015 (9)
    • August 2015 (6)
    • June 2015 (5)
    • May 2015 (6)
    • April 2015 (3)
    • March 2015 (16)
    • February 2015 (10)
    • January 2015 (16)
    • December 2014 (9)
    • November 2014 (7)
    • October 2014 (21)
    • September 2014 (8)
    • August 2014 (9)
    • July 2014 (7)
    • June 2014 (5)
    • May 2014 (8)
    • April 2014 (19)
    • March 2014 (8)
    • February 2014 (9)
    • January 2014 (31)
    • December 2013 (23)
    • November 2013 (48)
    • October 2013 (25)
  • Tags

    Business Defense Department Department of Veterans Affairs EHealth EHR Electronic health record Food and Drug Administration Health Health informatics Health Information Exchange Health information technology Health system HIE Hospital IBM Mayo Clinic Medicare Medicine Military Health System Patient Patient portal Patient Protection and Affordable Care Act United States United States Department of Defense United States Department of Veterans Affairs
  • Upcoming Events

Blog at WordPress.com.
  • Reblog
  • Subscribe Subscribed
    • healthcarereimagined
    • Join 154 other subscribers
    • Already have a WordPress.com account? Log in now.
    • healthcarereimagined
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

    %d